Reliable kinetic Monte Carlo simulation based on random set sampling

نویسنده

  • Yan Wang
چکیده

Kinetic Monte Carlo (KMC) method has been widely used in simulating rare events such as chemical reactions or phase transitions. Yet lack of complete knowledge of transitions and the associated rates is one major challenge for accurate KMC predictions. In this paper, a reliable KMC (R-KMC) mechanism is proposed in which sampling is based on random sets instead of random numbers to improve the robustness of KMC results. In R-KMC, rates or propensities are interval estimates instead of precise numbers. A multi-event algorithm based on generalized interval probability is developed. The weak convergence of the multi-event algorithm towards the traditional KMC is demonstrated with a generalized Chapman–Kolmogorov equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

Kinetic Monte Carlo Study of Biodiesel Production through Transesterification of Brassica Carinata Oil

In the present study, the kinetics of biodiesel production through transesterification of Brassica carinata oil with methanol in the presence of Potassium Hydroxide is investigated by kinetic Monte Carlo simulation. The obtained results from simulation agree qualitatively with the existing experimental data. The kinetics data for each step of suggested mechanism are confirmed by simulation. By ...

متن کامل

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

A New Approach for Monte Carlo Simulation of RAFT Polymerization

In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...

متن کامل

Dynamic random Weyl sampling for drastic reduction of randomness in Monte Carlo integration

To reduce randomness drastically in Monte Carlo (MC) integration, we propose a pairwise independent sampling, the dynamic random Weyl sampling (DRWS). DRWS is applicable even if the length of random bits to generate a sample may vary. The algorithm of DRWS is so simple that it works very fast, even though the pseudo-random generator, the source of randomness, might be slow. In particular, we ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013